PD-sets for Z4-linear codes: Hadamard and Kerdock codes

نویسندگان

  • Roland D. Barrolleta
  • Mercè Villanueva
چکیده

Permutation decoding is a technique that strongly depends on the existence of a special subset, called PD-set, of the permutation automorphism group of a code. In this paper, a general criterion to obtain s-PD-sets of size s + 1, which enable correction up to s errors, for Z4-linear codes is provided. Furthermore, some explicit constructions of s-PD-sets of size s+1 for important families of (nonlinear) Z4-linear codes such as Hadamard and Kerdock codes are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the permutation decoding for binary linear and Z4-linear Hadamard codes

Permutation decoding is a technique, introduced in [3] by MacWilliams, that strongly depends on the existence of special subsets, called PD-sets, of the permutation automorphism group PAut(C) of a linear code C. In [2], it is shown how to find s-PD-sets of minimum size s + 1 for partial permutation decoding for the binary simplex code Sm of length 2 − 1, for all m ≥ 4 and 1 < s ≤ ⌊ 2−m−1 m ⌋ . ...

متن کامل

The Z4-linearity of Kerdock, Preparata, Goethals, and related codes

Certain notorious nonlinear binary codes contain more codewords than any known linear code. These include the codes constructed by Nordstrom-Robinson , Kerdock, Preparata, Goethals, and Delsarte-Goethals . It is shown here that all these codes can be very simply constructed as binary images under the Gray map of linear codes over Z4, the integers mod 4 (although this requires a slight modificat...

متن کامل

Partial permutation decoding for binary linear and Z4-linear Hadamard codes

Permutation decoding is a technique which involves finding a subset S, called PD-set, of the permutation automorphism group of a code C in order to assist in decoding. A method to obtain s-PD-sets of minimum size s + 1 for partial permutation decoding for binary linear Hadamard codes Hm of length 2 , for all m ≥ 4 and 1 < s ≤ ⌊ 2−m−1 1+m ⌋ , is described. Moreover, a recursive construction to o...

متن کامل

A new series of Z4-linear codes of high minimum Lee distance derived from the Kerdock codes

A new series of Z4-linear codes of high minimum Lee distance is given. It is derived from the Z4-linear representation of the Kerdock codes. The Gray image of the smallest of these codes is a nonlinear binary (114, 2, 56)-code, and in the second smallest case the Gray image is a nonlinear binary (1988, 2, 992)-code. Both codes have at least twice as many codewords as any linear binary code of e...

متن کامل

New Ring-Linear Codes from Geometric Dualization

In the 1960s and 1970s the Nordstrom-Robinson-Code [30] and subsequently the infinite series of the Preparata[31], Kerdock[21], Delsarte-Goethals[6] and Goethals-Codes [7] were discovered. Apart from a few corner cases, all of these codes are non-linear binary block codes that have higher minimum distance than any known comparable (having equal size and length) linear binary code. We will call ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016